A Scala Tutorial
for Java programmers

Administrator
打字机文本
靳雄飞（中文翻译）

Administrator
附注
“Administrator”设置的“MigrationConfirmed”

Administrator
附注
“Administrator”设置的“Completed”

1 4 — Introduction

ARSI Scala 15 5 MgmiF s EN T IN A, EHECSEH —wwmfias, Ha%E T
Scala A RIS AR # - FAT B 2 A SCH 3 BT) 6 % 4w F2 - (Object-oriented
programming, JLIHJE java #15%) [IEREATE

This document gives a quick introduction to the Scala language and compiler. It
is intended for people who already have some programming experience and want
an overview of what they can do with Scala. A basic knowledge of object-oriented

programming, especially in Java, is assumed.

2 F—F — A first example

PAMEH I 31 “Hello world” 7E 5 55— A1, XA BLUAR FF A 2 50 &
(fascinating) , {H'& 7] LMRLF(7R Scala (IHE, HIESW KK Z HE S HE. 7~
ARSI

As a first example, we will use the standard Hello world program. It is not very
fascinatingbut makes it easy to demonstrate the use of the Scala tools without
knowing too much about the language. Here is how it looks:

object HelloWorld { def
main(args: Array[String])
{ printin("'Hello,
world!") } }

Java P17 5 AR 7R A) S5 A I B AAGE . B8 — A main 71k, HZH0E—A
FREEREAL, HEREE AT 4G main BT EA S — A4, WA THUE X println
Jrigmt “Helloworld! 7 [. main J7VEAIRFME (X 2&—A b2 J77% procedure
method) , Kk, X5 kA A BR [FIE A

The structure of this program should be familiar to Java programmers: it consists of
one method called main which takes the command line arguments, an array of strings,
as parameter; the body of this method consists of a single call to the predefined
method printin with the friendly greeting as argument. The main method does not
return a value (it is a procedure method). Therefore, it is not necessary to declare a
return type.

XL E main J7E1 object B, Java FE7 01 n] REEEARGS B A —2 . IX R B 7 X
SINT —NlHE YRR R BBl % (singleton object) ML, Rt EA HAE A5
M. L, EBIREE, e T — D40 Hellowor kd 2RI FIN, & FH] T i
F—Aspl, SEBI A Y Hel lowor hd o 2% S F 55— Ui FH B % BT Con
demand) 6%,

What is less familiar to Java programmers is the object declaration containing the

main method. Such a declaration introduces what is commonly known as a singleton
object, that is a class with a single instance. The declaration above thus declares both

a class called Helloworld and an instance of that class, also called Helloworld. This
instance is created on demand, the first time it is used.

dN.r(astute, HLEE, BRI E W RESVER S, main VIR AN static.
XS Scala PALELERRAS R (B8 kL2 JEYE, methods or fields) X —HE#,
Scala 18 F BTk i 5451 %7 % (singleton objects) 1 % B3 AR B A 1 2

The astute reader might have noticed that the main method is not declared as static
here. This is because static members (methods or fields) do not exist in Scala. Rather
than defining static members, the Scala programmer declares these members in
singleton objects.

2.1 g8iFiZ~P — Compiling the example

L PE LIS 6] 1, 2 scalac fr %, Xl Scala H4ii%ds. scalac [f TAEGAEM
2RI R A AT ERUr g PR IUE SR 44 (source file) DL O PES 4L, F
BB 2 AN H bR S (object files, B X 3CF) . Scala A= st H bR S0 A2
bk java class 3C1F

To compile the example, we use scalac, the Scala compiler. scalac works like most
compilers: it takes a source file as argument, maybe some options, and produces one
or several object files. The object files it produces are standard Java class files.

BRUNFATH Hel lowor Id /RFIFE /74775 2] Helloworld.scala SCfFH, WIATLLA LU Hs
LTI EE (KT9 >8R shelllfig 147 ERFF, ATHENTHEAN) -

If we save the above program in a file called Hel loworld.scala, we can compile it by
issuing the following command (the greater-than sign ‘>’ represents the shell prompt

and should not be typed):
> scalac HelloWorld.scala

ZIEAPATIE, /845 H 5% FAERJLA class 0, Hdr—A4>JE Helloworld.class,
PSS L E W scala FR AT IS (class), BEARERES WG 25Ty,

This will generate a few class files in the current directory. One of them will be called
HelloWworld.class, and contains a class which can be directly executed using the
scala command, as the following section shows.

2 BiT%~F — Running the example

RS gw eI LS, "M scala 582 121TFEF, scala 82 M1 java fe 21 HEAE
WAL, HREAEZ N A AT S PR AT g L w1, AT RU A R R4
1EAT, I TOYI R e s G -

Once compiled, a Scala program can be run using the scala command. Its usage is
very similar to the java command used to run Java programs, and accepts the same
options. The above example can be executed using the following command, which
produces the expected output:

> scala -classpath . HelloWorld

Hello, world!

3 1 Java #4TAAH — Interaction with Java

1 Java FRESAZ L RE), /& Scala i 5 i —. 7E Scala #2/7', java.lang i
TSR BRI, e 2RI E 2 X (explicitly) 5

One of Scala’s strengths is that it makes it very easy to interact with Java code. All
classes from the java. lang package are imported by default, while others need to be
imported explicitly.

FATRT LAl i — AN 1ok e s Scalaty Javalf A2 Hfig)y . RN, AT G 41 v
], LA E R (aEED 2R I BTk Ukt

Let's look at an example that demonstrates this. We want to obtain and format the
current date according to the conventions used in a specific country, say France- .

BAVFNE, £E Java [ZFEH CLS2HL T Date. DateFormat 5 fg i KT HE, H
Scala n] LAFI Java HE4T TC4%(seemlessly) 1 B4, FTLL, AH7E Scala F2 /7 Hh Al H 1x &
Dhfig, R A5 NIXLE Java 2KRIAT, o Sk A2 SEIUAH (R Dy Rg .

Java’s class libraries define powerful utility classes, such as Date and DateFormat.
Since Scala interoperates seemlessly with Java, there is no need to implement
equivalent classes in the Scala class library—we can simply import the classes of the
corresponding Java packages:

import java.util._.{Date, Locale}
import java.text.DateFormat
import java.text.DateFormat._

object FrenchDate {
def main(args: Array[String]) {
val now = new Date
val df = getDatelnstance(LONG, Locale.FRANCE)
printin(df format now)
}
}

Scala [#) import i1 F1 Java H* (] import R 485, {H Scala 1155 B sk L8, b dn,
BRGNP 2, 7E Scala TR LLVEE—T |, HfEEZ A KA
— AN KFE 5 H (curly braces, {(DEIAT . tbAh, WIRESIN— AN EE R ATA 4 7
Scala fiff 1] T &£k (underscore, _)ifiAJE S (asterisk, *) , XZRK A, 7t Scala
i, BERABERRRRSE (e k4D, RIS IE B IX RS

bR Y P ORI X, T B 5 b DX 3 L A AR e e 2K

Scala’s import statement looks very similar to Java’s equivalent, however, it is
more powerful. Multiple classes can be imported from the same package by
enclosing them in curly braces as on the first line. Another difference is that when
importing all the names of a package or class, one uses the underscore character
() instead of the asterisk (*). That's because the asterisk is a valid Scala identifier
(e.g. method name), as we will see later.

G, B e =471 import i5%), 5| T DateFormat ZEMIPTA , XM
771 getDatelnstance FIE A JE PE LONG % FrenchDate 253k, A& EL#2 1] ULI¥) (directly
visible) .

The import statement on the third line therefore imports all members of the
DateFormat class. This makes the static method getDatelnstance and the static field
LONG directly visible.

7E main LT, BATHE LA Java) Date SEB, %S EBRINEUIS R 48 4 i
[f); #2752k, A48 M DateFormat 25 5| A& J7 % getDatelnstance fill i —
AT H R o g df, Gl R, B S B e T A H AR X I

(Locale.FRANCE) ; HxtJii, fHH df K¢ iy i [AlEAT 4% A HFT B h B30 5
XA B G — 4T, RBLT Scala kT R R G = EKE M Cinteresting
property) : WD ERERZ NS, WA infix 15%, Wte i,
BN PN

df format now

1 df . Format(now) 15 X 5E AR Al HOE T SRy vG .

Inside the main method we first create an instance of Java’s Date class which by
default contains the current date. Next, we define a date format using the static
getDatelnstance method that we imported previously. Finally, we print the current
date formatted according to the localized DateFormat instance. This last line shows
an interesting property of Scala’'s syntax. Methods taking one argument can be
used with an infix syntax. That is, the expression

df format now

is just another, slightly less verbose way of writing the expression

df.format(now)

KRS MR AHERAET, (HE AR R, A a R s o it
— R

This might seem like a minor syntactic detail, but it has important consequences,
one of which will be explored in the next section.

Jh, M Java 55 Scala &5 MMAER, HA—H#EMZ, Scala *rfPLH B4k Java
(2Rl sl Java) H:H .

To conclude this section about integration with Java, it should be noted that it is
also possible to inherit from Java classes and implement Java interfaces directly in
Scala.

4 —Y)% X% — Everything is an object

Scala " — VAR X%, WX X i3, Scala A2k 11 7 4 % (pure
object-oriented) i 5. fEiX— 5 L, Scala 5 Java A, Pk Java i, J512K
A (primitive types) F5IHZRELEAG X1, 11 H Java hAGEHL K%L (function)
A (value) KRR

Scala is a pure object-oriented language in the sense that everything is an object,
including numbers or functions. It differs from Java in that respect, since Java
distinguishes primitive types (such as boolean and int) from reference types, and
does not enable one to manipulate functions as values.

4.1 FFRMN% — Numbers are objects
U EC R %, B DA B L, i FRSEARRIE S

1+2%3/x
SEbr Bsg A A (method calls) FRGI . AT 1 D& 80 “ B80T
7 RS, ek, BRI Ed N XA RIE A O A Bk
(1) -+(((2)-*(3))-7(C))

Since numbers are objects, they also have methods. And in fact, an arithmetic
expression like the following:

1+2 3/x*

consists exclusively of method calls, because it is equivalent to the following
expression, as we saw in the previous section:
@ -+((2-*(3))-/())

H L FRA TR FT AR £: +, *5EFF57E Scala T A AR RAE CFIRTTIEH T EE) .

This also means that +, *, etc. are valid identifiers in Scala.

TEEE R 5k, INegy EIFE S 220, K2 Scala (il 43 # s 4l FH S AR
(longest match, FACULAD) RILECAFS, Frlh, FRikx:

1.+(2)

KRR R: 1o+ 2 =ANFF S, HAR “1.7 M “17 FRR ks, 3 “1.7 K
JEH A, Tl Scala ik Hras ook e, m “1.” &4 T e (literal) “1.0” ,

44 7> Doublle 7 KU A B TRATHIZE) e BEH. JF LI 2E 305 b TR I 55
AR IZFE

-+

DAE G0 45 1 B RS B Double 2871

The parentheses around the numbers in the second version are necessary because

Scala’s lexer uses a longest match rule for tokens. Therefore, it would break the
following expression:

1.+(2)

into the tokens 1., +, and 2. The reason that this tokenization is chosen is because 1.
is a longer valid match than 1. The token 1. is interpreted as the literal 1.0, making it a
Double rather than an Int. Writing the expression as:

-+

prevents 1 from being interpreted as a Double.

4.2 REREXE — Functions are objects

7 Scala "', % (functions)th & X} % (objects), Lk, pRE] LAY S Eb AT 1L 3,
A LLE R B AR AT R b, AT DA R B D HoA pR B3R [MIfE, Java FEFP DL A] e
WAFIX L — HAR AT R PE . IX R e BCA BB T BRI BE T, 2 e B
(functional programming) &= Z[¥)4iE (cornerstone, A1) 2.
Perhaps more surprising for the Java programmer, functions are also objects in Scala.
It is therefore possible to pass functions as arguments, to store them in variables, and
to return them from other functions. This ability to manipulate functions as values is
one of the cornerstone of a very interesting programming paradigm called functional
programming.

2 AR, T LA B R B AR R R AR R AT o R AT T A —A
SEI A%, € NS EAT — € BIE, FATITIE ERAT ISR E 45 ? IR E
IR A —ANSEIEER RS (function) « VPTG, xR eR Bk
AR EM A Cuser-interface) AHARIS T, il iy, 2 Pt
T FRT e iF R

As a very simple example of why it can be useful to use functions as values, let's
consider a timer function whose aim is to perform some action every second. How do
we pass it the action to perform? Quite logically, as a function. This very simple kind of
function passing should be familiar to many programmers: it is often used in
user-interface code, to register call-back functions which get called when some event
occurs.

T THT PR e ST TR B I s (1) D) g S 9753 0 I 1 B8 £ (function) 4 4 : oncePerSecond,
BN EE NS, ZEIE B ZERNE R O => Unit, RE(TMESE
TEIR [FHE T R E (unit FT CIC+H+F 1) void 2840 « R main J5 8 FH 5 5 ek 5%,

1E RS SALRE L IR R 2L timeFlies, (X n & and] El—A)1E, FrLl, A7 00 sEhs
DIREAE: BERVBIEDiHE LT ED—45(5 E.: time flies like an arrow.

In the following program, the timer function is called oncePerSecond, and it gets a
call-back function as argument. The type of this function is written () => Unit and is
the type of all functions which take no arguments and return nothing (the type Unit is
similar to void in C/C++). The main function of this program simply calls this timer
function with a call-back which prints a sentence on the terminal. In other words, this
program endlessly prints the sentence “time flies like an arrow” every second.

object Timer {
def oncePerSecond(callback: () => Unit) {
while (true) { callback(); Thread sleep 1000 }
}
def timeFlies(Q) {
printIn('time flies like an arrow...")
}
def main(args: Array[String]) {
oncePerSecond(timeFlies)
}
}

, PP Scala TiE X7k printin SEILAAF R WoR, 1A H System.out
Lmﬁ&o

Note that in order to print the string, we used the predefined method println instead
of using the one from System.out.

4.2.1 E&ZEE — Anonymous functions

SE 25 (PR B RE ik v DA — 26 it . 158, timeFlies BEUUB IS —k, i
M Ial i R A% 45 oncePerSecond [, o3 A R £, £ HH 21 0 IR BV IRy Ao g 5245 24,
PR kg] LA 25 e SCRI iy 44 IRIRRAL, 7€ Scala H, XK1 s 20k b BE 44 4L (anonymous
functions) , it ERA LT HRE. TH 4 REUE timeFlies BEUS R FACHS
W

While this program is easy to understand, it can be refined a bit. First of all, notice that
the function timeFlies is only defined in order to be passed later to the
oncePerSecond function. Having to name that function, which is only used once, might
seem unnecessary, and it would in fact be nice to be able to construct this function
just as it is passed to oncePerSecond. This is possible in Scala using anonymous
functions, which are exactly that: functions without a name. The revised version of our
timer program using an anonymous function instead of timeFlies looks like that:

object TimerAnonymous {
def oncePerSecond(callback: () => Unit) {

while (true) { callback(); Thread sleep 1000 }
}
def main(args: Array[String]) {
oncePerSecond(() =>
printIin("'time flies like an arrow..."))
}
}

ARAG A A 7 Sk => KRR P e — DN E R R, Bk il 4 U 2 50114,
IR . ARG, SEH AN (Fi 3k Aot — R H65), T RR AR S i
€ X[timeFlies & faFr—2k,

The presence of an anonymous function in this example is revealed by the right arrow
‘=>" which separates the function’s argument list from its body. In this example, the
argument list is empty, as withessed by the empty pair of parenthesis on the left of the
arrow. The body of the function is the same as the one of timeFlies above.

5 2K — Classes

A C23iid, Scala/tm xR MES, ILlEH 2R (class) M2, Scalarh # 1
KM E LA davaibl, HA — S EBENZES, Wk Scalad (128 e X nT LLas 241
(parameters) , FfisE XHIE % (complex number) 1] LR M) i — k.

As we have seen above, Scala is an object-oriented language, and as such it has a
concept of class.2Classes in Scala are declared using a syntax which is close to
Java’s syntax. One important difference is that classes in Scala can have parameters.
This is illustrated in the following definition of complex numbers.

class Complex(real: Double, imaginary: Double) {

def reQ
def imQ

}

real

imaginary

BRI UIRZ A ZH, i AR E) SR, AR ZEB1 % Complex S 5K
B, MR AL A28, Bl new Complex(1.5, 2.3). ZREMWNHIE: re
AU im, 30 3 U5 T 2580 5 0 RIS

This complex class takes two arguments, which are the real and imaginary part of the
complex. These arguments must be passed when creating an instance of class
Complex, as follows: new Complex(1.5, 2.3). The class contains two methods, called
re and im, which give access to these two parts.

W SRR AL, XA TR IR MBS A WU o AR AR T, gw e ds v LUR Hs
BREE XA (right-hand), #Er(infer, deduce) B> e& B3R [RI{E # 2 Double

KM,

2R RUL, OB LRI X R TE F WA (class) (MR, {HScaladfAEdhz —.

It should be noted that the return type of these two methods is not given explicitly. It
will be inferred automatically by the compiler, which looks at the right-hand side of
these methods and deduces that both return a value of type Double.

B2 e T AR AT AT SO0 T #RBE Va4 5 L B 28, g HL, AROHME] — 215 B (R R ok
E XA 2GR ATEL, A AT R AT BL. ANad, AT BaFe ek, HBiAES
HRMRRIL, e AtdonE R, Pril, SRR IVE, XSSP iR
WA K o XTI, A AREARIZRE — 5 S). 2 B R SRR B R S 3 Bl 26
RN, FINAZ 2GR A, ool 2 TRy, Mraiieo. XM E—Bard
], FEP R SR 20, AT AT LA EGASE B 0)R T) I 148 s 2R 2 A B, T]
IRINAEAT S WatliEATICH

The compiler is not always able to infer types like it does here, and there is
unfortunately no simple rule to know exactly when it will be, and when not. In practice,
this is usually not a problem since the compiler complains when it is not able to infer a
type which was not given explicitly. As a simple rule, beginner Scala programmers
should try to omit type declarations which seem to be easy to deduce from the context,
and see if the compiler agrees. After some time, the programmer should get a good
feeling about when to omit types, and when to specify them explicitly.

5.1 & Jj%— Methods without arguments

Complex K9 re Fl im J7VEA NN, g2 XA LR, W8T A4
PR E—X P46, BN e+ —F:

A small problem of the methods re and im is that, in order to call them, one has to put
an empty pair of parenthesis after their name, as the following example shows:

object ComplexNumbers {
def main(args: Array[String]) {
val c= new Complex(1.2, 3.4)
printIn(Cimaginary part: " + c.im())
}
}

IR BE A 15X LR S S 55, SR UTHE sk (fields) —FEVS R 2R 5%,
R P2 it IXAE Scala 12 rIAT), Rk =20e SO A 25 (without
arguments) Bl]. JEZ 5k ZE S 777 (methods with zero arguments))2 5 A4E T
TS T A WA RIS, B JE0E 7 k4 Ja IS 5 o L, T Complex ZEw] L
HEUE:

It would be nicer to be able to access the real and imaginary parts like if they were
fields, without putting the empty pair of parenthesis. This is perfectly doable in Scala,
simply by defining them as methods without arguments. Such methods differ from
methods with zero arguments in that they don’'t have parenthesis after their name,
neither in their definition nor in their use. Our Complex class can be rewritten as
follows:

class Complex(real: Double, imaginary: Double) {
def re = real
def im = imaginary
}
5.2 &AM GEE — Inheritance and overriding

Scala F A ARG K 3 H— ALK (BE UGBS, super-class) , #% A WaUig e
R (LN i) complex 28) , MIERIAZk# H scala.AnyRef.

All classes in Scala inherit from a super-class. When no super-class is specified, as in
the Complex example of previous section, scala.AnyRef is implicitly used.

7F Scala F LIS (overriding) MRk & K 77k, HLZUEH override B4k
SN, XRER] DL G B R) J7 8 7 (accidental overriding) o #1201, i & X
(1) Complex J&Hr, FATAILATE S M object KP4k K] tostring J7ik, AUEMIT:

It is possible to override methods inherited from a super-class in Scala. It is however
mandatory to explicitly specify that a method overrides another one using the
override modifier, in order to avoid accidental overriding. As an example, our
Complex class can be augmented with a redefinition of the toString method inherited
from Object.

class Complex(real: Double, imaginary: Double) {
def re = real
def Im = imaginary
override def toString() =
" +re + (if (im < 0) " else "+") + im + "i"

6 &R AER LA — Case classes and pattern matching

B A2 AR AT e A A T R AR i 10— R s g k), N RS 2 AN 2 135 2 PN S FH Aok 3R
RS EERY; XML SCRY A 25K i85 — 27588 (44, containers) &3 T #11),
Ebtun: 218 (red-black tree, —Fh H P — X&)

A kind of data structure that often appears in programs is the tree. For example,
interpreters and compilers usually represent programs internally as trees; XML
documents are trees; and several kinds of containers are based on trees, like
red-black trees.

Bk, BATEL A RBIRET, T HEAE Scala WM KRR FHEIEW TE 458, 1XA 7R~
W SELAR] BT AS D RE, 12 E S AR AT UG B 5 vk . AR RENUBECR B SRR
B, Bl 1+ 20 (x+ x)+ (7 + y)EE

We will now examine how such trees are represented and manipulated in Scala
through a small calculator program. The aim of this program is to manipulate very
simple arithmetic expressions composed of sums, integer constants and variables.
Two examples of such expressionsare 1 + 2and (x + x) + (7 +).

W, BTATEYE A FORIZFE I RIA N B AARIE RS MBS R, F M 77 3k
BRI CRARRIRAME 5, 2 AR 379 mEos B R CRA SR A
Bl R EMARE)

We first have to decide on a representation for such expressions. The most natural
one is the tree, where nodes are operations (here, the addition) and leaves are values
(here constants or variables).

WMHELE Java 11, SIRTE SRS WM B — AN RN %2, K5
PRI R — AR A SR IR KR . MAE R B g FEE =, AT L
REEHESH (algebraic data-type) KIAF|FEIFEA H K. Scala WAL T —Fh /1%
T2 CRYGRAREEAR D, W 5A4F2 (case classes) WM, FHiste
P2 A 58 W I 7 5 AR

In Java, such a tree would be represented using an abstract super-class for the trees,
and one concrete sub-class per node or leaf. In a functional programming language,
one would use an algebraic data-type for the same purpose. Scala provides the
concept of case classes which is somewhat in between the two. Here is how they can
be used to define the type of the trees for our example:

abstract class Tree

case class Sum(l: Tree, r: Tree) extends Tree

case class Var(n: String) extends Tree

case class Const(v: Int) extends Tree
LA Sum, var AT Const U A AEE, EAN T A) ZE S T EARELAE W R JLAN 5 T -
The fact that classes Sum, Var and Const are declared as case classes means that
they differ from standard classes in several respects:

o WHESAFIEI S, TEAE] new JCEET-CLE A, AT LA B2 const(5)
R new Const(5) KAIEESLH)

e the new keyword is not mandatory to create instances of these classes
(i.e. one can write Const(5) instead of new Const(5)),

o FZ RIS R AT (1 S QIR MK getter 57k (BmLE U,
MR ¢ J2& const A, IS c.v RIWT;) A4 3 ok b (1) 44 2 4K
v RIED

e getter functions are automatically defined for the constructor
parameters (i.e. it is possible to get the value of the v constructor
parameter of some instance c of class Const just by writing c.v),

o SAFRHABERINLIN equals A hashCode I vk, AN IX AN J7 vk
L T S2 B (R 45 A & (structure of instance) , A &dk
TSz B T XA M (identity) , iX— &0 java 7 Object
SRR [R) 44 D7 VA H BRI SE B FE A — S

o default definitions for methods equals and hashCode are provided,
which work on the structure of the instances and not on their identity,

o MM T — A ERIAM) tostring ¥, HEE DLYE AL JE
(source form) FJENSZHIMIME (Lban, KA x+1 ST EIEK

sum(var(x),Const(1)), X MFIENZR, FIJACHS h O Kk =045
R B} (R I8 B AR 58 42— 30
e a default definition for method toString is provided, and prints the

value in a “source form” (e.g. the tree for expression x+1 prints as
Sum(Var(x),Const(1))),

o AR s n] LA AL VLS (pattern matching) #EAT 4)fi#
(decompose) , & FRESTELINH.

e instances of these classes can be decomposed through pattern
matching as we will see below.

BEARBAT O 20 LT H TR EARFIA R 451, e N RIATAT Lhe UPE R AEIX
ORI AR EIERE. HoE, B L ANERRE I (environment, ETRI0
X FIA AT RAE N R4, TR ERBE 1 FH 0 T i e R0 = 748 o R UL o 49 2t
H—AIREL, AR x RN 5, FA1C K: X — 5}, A, ERXANHE FRx+1
e, HEIMZERN 6.

Now that we have defined the data-type to represent our arithmetic expressions, we
can start defining operations to manipulate them. We will start with a function to
evaluate an expression in some environment. The aim of the environment is to give
values to variables. For example, the expression x + 1 evaluated in an environment
which associates the value 5 to variable x, written {x — 5}, gives 6 as result.

R, BT R RS B AORE s . WTBMEG A& (hash table) 23
Mg 2k, T LLEBAE % (functions) ! SR b, FREEELZE —ANAAR R T
FEEERI R LA SIS {x — 5}, 7F Scala 7] LL'5 B

We therefore have to find a way to represent environments. We could of course use
some associative data-structure like a hash table, but we can also directly use
functions! An environment is really nothing more than a function which associates a
value to a (variable) name. The environment {x — 5} given above can simply be
written as follows in Scala:

{ case "x" => 5}

FIRX AT E LT AR, WG LR B N — DR e E A S, W
BORHEEL 5, AW, Kl R .

This notation defines a function which, when given the string "'x as argument,
returns the integer 5, and fails with an exception otherwise.

EERIEACKRME R I /T, FATEEXFAEL T (type of the environments) #EAT
Tk . EARLEREFETh2#E] Sstring = Int XRS5 LR, HAHEERAZ)G,
A LATRAACHS, JEAEARRER A SN J7 (8 CX BT dr 44,) B A Bl
EUE H o XM . fE Scala 1, Wi N ARE R SE A 4 -

Before writing the evaluation function, let us give a name to the type of the

environments. We could of course always use the type String => Int for
environments, but it simplifies the program if we introduce a name for this type, and

makes future changes easier. This is accomplished in Scala with the following
notation:

type Environment = String => Int

WE, KR4 Environment i UAEN “M String F Al Int” X554

From then on, the type Environment can be used as an alias of the type of functions
from String to Int.

e, BAPRERACRE SRR SEIEHAR B PIARIEAXZH (sum)
SET I A FRAE R AR5 KA AR M EAR NI TR R S T
RAL . f£ Scala "R IX AL I AN X

We can now give the definition of the evaluation function. Conceptually, it is very
simple: the value of a sum of two expressions is simply the sum of the value of these
expressions; the value of a variable is obtained directly from the environment; and
the value of a constant is the constant itself. Expressing this in Scala is not more
difficult:

def eval(t: Tree, env: Environment): Int = t match {
case Sum(l, r) => eval(l, env) + eval(r, env)
case Var(n) => env(n)
case Const(v) => v

}

SRARL BRI BRI A S B B € b FR) 5 A TR DL S, I T o DG G R £ P 40 ok (i
b LD -

This evaluation function works by performing pattern matching on the tree t.
Intuitively, the meaning of the above definition should be clear:

L SRAERREOT e i € J2 A2 — 3R (sumd , dn e, WHE € 1926744
FUAT 05 20 S 46 BB SFTIGAR 0 f e b, SRJE X E Sk A il ik
ITIsS CSEbr Bl o i SR A SR EAR G AN, X — s o Fi
kAR IS] DU 5 Sk AT S0 AR, i 1 AT ro it first
checks if the tree t is a Sum, and if it is, it binds the left sub-tree to a new
variable called I and the right sub-tree to a variable called r, and then
proceeds with the evaluation of the expression following the arrow; this
expression can (and does) make use of the variables bound by the
pattern appearing on the left of the arrow, i.e. 1 and r,

2. WEREE AR AL, WEE U W e AR sum, P RMERE € 2
A=A var; WRE, W var TESHA AR ERZE n b, R
Jo RBEPAT T SR A TA B . if the first check does not succeed, that is if
the tree is not a Sum, it goes on and checks if tis a var; if it is, it binds the
name contained in the var node to a variable n and proceeds with the
right-hand expression,

3. WA A EWAL, WERER ¢ BEAZ sum, A var, L
PR €A B Conste WIS, WK BB & IR 4 AL 5 v,
SR AR BT F S AL Z % . if the second check also fails, that is if tis
neither a Sum nor a Vvar, it checks if it is a Const, and if it is, it binds the
value contained in the Const node to a variable v and proceeds with the
right-hand side,

4. fJa, RV EPTA BR AL, R A, R RIA A
R LI 7= TR . XAE O, EAGIT, AR T HEZ Tree 7
2, HIBAT G s BB UL RC AR IR, A3 3. finally, if all checks fall,
an exception is raised to signal the failure of the pattern matching
expression; this could happen here only if more sub-classes of Tree were
declared.

Wk g, JATATLLE R, BULACH R, SKhs ERUEH—AME (value) F1— 7
R CHEAT EORE, R aetg ULid b, WIME (value) A HHRAE (parts) @47
frds, R X AT (HEASED RSN — BB AT .

We see that the basic idea of pattern matching is to attempt to match a value to a
series of patterns, and as soon as a pattern matches, extract and name various parts
of the value, to finally evaluate some code which typically makes use of these named
parts.

—M 4K (seasoned, EZkMH)) X R AT RES) AT AAE eval & X
Rk Tree IBUA T TR? 92 1, X AMABAT, WYL Scala i1, 4RI+,
HATLLE 5. A, “BECULHS” M “2RT7E” Br T e Ak 1022 57, L&A) Bk,
A T LR P 9 L 75 SR AN HH B A6 4 -

A seasoned object-oriented programmer might wonder why we did not define eval as
a method of class Tree and its subclasses. We could have done it actually, since
Scala allows method definitions in case classes just like in normal classes. Deciding
whether to use pattern matching or methods is therefore a matter of taste, but it also
has important implications on extensibility:

o MHIRT VR, ININ—FmEr Ty SRR e fay 5, RO TR I — Tree
IR . AHE, BEZEA L IR R U Eh s R, IR R X T
B Tree FIFTH 12K,

e when using methods, it is easy to add a new kind of node as this can be
done just by defining the sub-class of Tree for it; on the other hand,
adding a new operation to manipulate the tree is tedious, as it requires
modifications to all sub-classes of Tree,

o fH AR ICVL AT, o O0 U NI A Be e 80— o (0777 s R I s B8 2
AAE AR L ARG IC R Hs i 3 0o A #8410 U B g o, U 2
BB) R B R]

e when using pattern matching, the situation is reversed: adding a new kind
of node requires the modification of all functions which do pattern

matching on the tree, to take the new node into account; on the other
hand, adding a new operation is easy, by just defining it as an
independent function.
AT RN RR BB AV, FATEA T ARELE g S ASB e 555K 3
(symbolic derivation, F#0 o ZERERHMGLT -

To explore pattern matching further, let us define another operation on arithmetic
expressions: symbolic derivation. The reader might remember the following rules
regarding this operation:

1. MFRS, 2T 5K SHF,. the derivative of a sum is the sum of the
derlvatlves,

2. AR v RS, AWMIEN: WRARE v RG] T RS S, WaR[A]
1, HIR[ME 0. the derivative of some variable v is one if v is the variable
relative to which the derivation takes place, and zero otherwise,

3. Wk 515K 0. the derivative of a constant is zero.

XJLARENUF- AT LA AR R Scala (945 -
These rules can be translated almost literally into Scala code, to obtain the following
definition:

def derive(t: Tree, v: String): Tree = t match {
case Sum(l, r) => Sum(derive(l, v), derive(r, Vv))
case Var(n) if (v == n) => Const(1)
case _ => Const(0)

}

J_J_;kd‘ e S, X T AR S ICECAH G Fn ik . 55— case WAL

—/~ guard, ‘T T i f IS ILE RIEX 4 . guard /EHJEXT case IEHT
E‘ﬂ‘ﬁfﬁiﬁﬁ:?ﬁﬁﬁ%, WA if JGIHMRIEA, true I, A ARVFILECT . AEARGIH,
guard fRIUEY HACY B R FHRE A n ST 40K S5455 v i, A RFIFE 1.
BEAVTHC T DA ATEACAT G, FRIZD SRILEATERML (A4 T java ' switch i&
fJfF) default 7337)

This function introduces two new concepts related to pattern matching. First of all, the
case expression for variables has a guard, an expression following the if keyword.
This guard prevents pattern matching from succeeding unless its expression is true.
Here it is used to make sure that we return the constant 1 only if the name of the
variable being derived is the same as the derivation variable v. The second new
feature of pattern matching used here is the wild-card, written _, which is a pattern
matching any value, without giving it a name.

BEQUCEC I Th e AR a ok, HBR T AWK BRI, B TR ATHOR Z WA TS,
B ROk, BADBEEE N, REF A A B e . ik, B4
9’5 — M main BREL ERRECR, SBOIE—ANRIEK: X+ x)+ (7 +y), RIGERE
{x = 5,y — T}ERFIEXMM,)5 nlkEEXAT T x Fy 19540

We did not explore the whole power of pattern matching yet, but we will stop here in
order to keep this document short. We still want to see how the two functions above
perform on a real example. For that purpose, let's write a simple main function which
performs several operations on the expression (x + x) + (7 + y): it first computes its
value in the environment {x — 5, y — 7}, then computes its derivative relative to x and
theny.

def main(args: Array[String]) {
val exp: Tree = Sum(Sum(Var("'x™),Var("'x™)),Sum(Const(7),Var(''y'™)))
val env: Environment = { case "x" => 5 case "y" => 7 }
printIn("Expression: " + exp)
printIn("Evaluation with x=5, y=7: " + eval(exp, env))
printIn('Derivative relative to x:\n " + derive(exp, "'x"))
printIn('Derivative relative to y:\n " + derive(exp, "y"™))

}

PUTIZBRES, AR5t an
Executing this program, we get the expected output:

Expression: Sum(Sum(Var(x),Var(x)),Sum(Const(7),Var(y)))
Evaluation with x=5, y=7: 24

Derivative relative to x:
Sum(Sum(Const(1),Const(1)),Sum(Const(0),Const(0)))
Derivative relative to y:
Sum(Sum(Const(0),Const(0)),Sum(Const(0),Const(1)))

fran e FE e, AT, Rk F45 8110 (simplification) J& R4 H
JUe I AFFREECUC ALK 2 MR AU R A RS (FRBRBT e, &
G A SR

By examining the output, we see that the result of the derivative should be simplified
before being presented to the user. Defining a basic simplification function using
pattern matching is an interesting (but surprisingly tricky) problem, left as an exercise
for the reader.

7 Traits CFR1E. #FME)

Scala HFZEAHE] LA 4R KA (code) , ik r] LM —ANEk#E Z A traits 5] AL
fih,

Apart from inheriting code from a super-class, a Scala class can also import code
from one or several traits.

X Java FEI7 Dok i, B traits S & A, A0 AR T DLVRL A AR I 1
1 (interface) . £ Scala ', WIS —AN4kK B FAS trait, WHZISSLILT trait 14
1, FE4kK T trait FIFTE S (code)

Maybe the easiest way for a Java programmer to understand what traitss are is to
view them as interfaces which can also contain code. In Scala, when a class inherits
from a trait, it implements that traits’s interface, and inherits all the code contained in
the trait.

BAVH—AZ B 1 HEX% (ordered objects) K JE7x trait I/EH . HIRZ N
s, WEARIENZZE R RN, WnmHrHEL%. 4 Java , wfLLszi
Comparable #:1, 1Mt Scala 1, A HEFHIMNE, L E X—>F Comparable Xf
S trait, 44°4: ord.

To see the usefulness of traits, let's look at a classical example: ordered objects. Itis
often useful to be able to compare objects of a given class among themselves, for
example to sort them. In Java, objects which are comparable implement the
Comparable interface. In Scala, we can do a bit better than in Java by defining our
equivalent of Comparable as a trait, which we will call ord.

G2 MR, TEAMETE (predicate,) « AT, MFET, %T, K%
T, KFHT, KFo AL, TSP IPUR, oLV 5 AR RE, o,
PUBER G T RN TR, U DU T DS ok, BTLL, R AR
T PSR CIIFE trait IR, M THNE) o EFULERA, &
VAT F T AR 2 XA trait:

When comparing objects, six different predicates can be useful: smaller, smaller or
equal, equal, not equal, greater or equal, and greater. However, defining all of them
is fastidious, especially since four out of these six can be expressed using the
remaining two. That is, given the equal and smaller predicates (for example), one
can express the other ones. In Scala, all these observations can be nicely captured
by the following trait declaration:

trait Ord {
def < (that: Any): Boolean
def <=(that: Any): Boolean
def > (that: Any): Boolean
def >=(that: Any): Boolean

}

(this < that) |] (this == that)
1(this <= that)
1(this < that)

PLEARHS, s T #1 java ' Comparable 42 10 %61 trait: ord, RN, BRIASCHL T —
ANWTE, X =AW OB SR YA S) (B4 BARSRSEIL) o &8 THIANGE T BRIAE
ETIAXNSR L, PRI AN 2 5 AE o

This definition both creates a new type called ord, which plays the same role as
Java’'s Comparable interface, and default implementations of three predicates in terms
of a fourth, abstract one. The predicates for equality and inequality do not appear here
since they are by default present in all objects.

AR 2SR Any J2& Scala HH BT A IRBLGEEE . B L java H 1) Object JERL B
WH, BUREEAZETAN: 1Int, Float t &4k H %KM

The type Any which is used above is the type which is a super-type of all other types
in Scala. It can be seen as a more general version of Java’'s Object type, since it is
also a super-type of basic types like Int, Float, etc.

PR — AR S AT b, RS (mixin, SEBR B2 4k B E X ord trait

(J3C class, NN ATRERER) , JFLIAHAERNIN T (inferiority, 2545, 25459
PN BRI AT . 2 F okt &) 7 Ui i, AT L —> Date 28, IXAEAEH = AL
SRMFORAPINAE. AL H, %K%K A ord, ARSI

To make objects of a class comparable, it is therefore sufficient to define the
predicates which test equality and inferiority, and mix in the Ord class above. As an
example, let's define a Date class representing dates in the Gregorian calendar. Such
dates are composed of a day, a month and a year, which we will all represent as
integers. We therefore start the definition of the Date class as follows:

class Date(y: Int, m: Int, d: Int) extends Ord {
def year = y
def month = m
def day = d

override def toString(): String = year + "-" + month + "-" + day

T RO T B ER A 2R A NI S 4 T extends Ord, X2 Date KA W4k 2K [ord
trait (11575

The important part here is the extends Ord declaration which follows the class name
and parameters. It declares that the Date class inherits from the Ord trait.

BTk, RAVEES (redefine) M object 4k7KIK) equals J5ik, 1%J7 kI BRINSEIL
e WO R R R RF I CEEtm A7) 5 10 Date R LLEE. HL HFPBIEA
REAAE K/

Then, we redefine the equals method, inherited from Object, so that it correctly
compares dates by comparing their individual fields. The default implementation of
equals is not usable, because as in Java it compares objects physically. We arrive at
the following definition:

override def equals(that: Any): Boolean =
that.islnstanceOf[Date] && {
val o = that.aslInstanceOf[Date]
o.day == day && o.month == month && o.year == year

}

DL EACHD F 21 T AN TIE IR J71:: isInstanceOf il asinstanceOf, H:p

isInstanceOf 71X} W java 1) instanceof #AERT, 4 HA G — AR 2R 7
SRR e RILHCIT, AR [H] true; aslinstanceOf J7 XY java H1] cast 5# il 2
TURGAARAE : GRG0 GO e IS, 4D, 5 WAl H ClassCastException

B A
JF o

This method makes use of the predefined methods islInstance0f and aslInstanceOf.
The first one, islnstanceOf, corresponds to Java’'s instanceof operator, and returns
true if and only if the object on which it is applied is an instance of the given type. The
second one, aslnstanceOf, corresponds to Java’s cast operator: if the object is an
instance of the given type, it is viewed as such, otherwise a ClassCastException is
thrown.

e)a, BT Ew X—AHW N T CGnferiority) [RREL ZEREBCUH B T —ANFie X7k
error, TEALEYEWE &, FEMfR e MR E e . AT

Finally, the last method to define is the predicate which tests for inferiority, as follows.
It makes use of another predefined method, error, which throws an exception with
the given error message.

def <(that: Any): Boolean = { if
('that. islnstanceOf[Date])
error(*'cannot compare " + that + "
and a Date™)

val o = that.aslnstanceOf[Date]
(year < o.year) ||
(year == o.year && (month < o.month |]
(month == o.month && day < o.day)))

}

2k, pate Kt E5E T, ZRMISLHIBE AT M EE L — N HI (dates) , WATLIWE
YE—ANT LRt %, JFH, TwBREL, MA1#AG NS HELR WS, Hod, equals
M<BH e XAE Date K I, 1 EPIAN4E& H ord trait.

This completes the definition of the Date class. Instances of this class can be seen
either as dates or as comparable objects. Moreover, they all define the six
comparison predicates mentioned above: equals and < because they appear directly
in the definition of the Date class, and the others because they are inherited from the
ord trait.

Traits I/ R A 1EIXLE, HFEAN T T ASCRIE

Traits are useful in other situations than the one shown here, of course, but discussing
their applications in length is outside the scope of this document.

8 % — Genericity

Jh, BATFKER Scala Tz, Java 7F 1.5 A5 Nz, b2, Java 27
SR TR 5 SR RSCRE PTS UR RO AR) L, NAZIE R A
The last characteristic of Scala we will explore in this tutorial is genericity. Java

programmers should be well aware of the problems posed by the lack of genericity in
their language, a shortcoming which is addressed in Java 1.5.

PHBZ A, WA T LAE I S EBU R RE . Blan, 1 — DM ATTERPETT K TP
O, ABARER A —MER Clinked list) 458, flnZuksg, FERER AT DA RAT A28 1
JUER . HITHER AT AR AT, I AT B E SR th s SR SR AL S ANBILSE I, T
S NIRRT, $B0lb 2 25 S8 78 1A I FH Al AR) Sy R AP o

Genericity is the ability to write code parametrized by types. For example, a
programmer writing a library for linked lists faces the problem of deciding which type
to give to the elements of the list. Since this list is meant to be used in many different
contexts, it is not possible to decide that the type of the elements has to be, say, Int.
This would be completely arbitrary and overly restrictive.

FEXPE LR, Java F2I7 R IEFE object FER RGP, (HIXFPfE vy ZIRAEEAR,
—J7 1M, java FHFEAKEAY, LU int, long, Float 2525 AN e X%, Wt ik NEER,
F—J71h, i Object IXFEMIEINHS, B R T 0 EAARM KT 215K
UL

Java programmers resort to using Object, which is the super-type of all objects. This
solution is however far from being ideal, since it doesn’t work for basic types (int,
long, Float, etc.) and it implies that a lot of dynamic type casts have to be inserted by
the programmer.

Scala 5| ANJZ I (FNZ M5 KR iX AN . iERATUASIH (reference) 44
KTz, Sl e R as, nTCUR MR It %, o i HFa i tg
) o

Scala makes it possible to define generic classes (and methods) to solve this problem.
Let us examine this with an example of the simplest container class possible: a
reference, which can either be empty or point to an object of some type.

class Reference[T] { private var contents: T = _

def set(value: T) { contents = value }
def get: T = contents }

PLEARAS A, Reference J& 8L, T RRMSE ., KMSEEFRPH T2 XL E
contents)2 HI1E set /7L S HLL K get J5 iR [FIE .

The class Reference is parametrized by a type, called T, which is the type of its
element. This type is used in the body of the class as the type of the contents
variable, the argument of the set method, and the return type of the get method.
BT T A A, ARG AR, RGP
XA R _RREFEAM BRI, b, Ber R BIAE & 0, Boolean AUHERIA
it False, Unit BHEQ, MIIERINSKEA (object type) MERIAEN null,

The above code sample introduces variables in Scala, which should not require
further explanations. It is however interesting to see that the initial value given to that
variable is _, which represents a default value. This default value is O for numeric
types, false for the Boolean type, () for the unit type and null for all object types.

LI H] Reference 28, TEIRERMSH T M AMARAL, Wl Shi5I IR G,
Bhn, R A AR A R T AR 5 -

To use this Reference class, one needs to specify which type to use for the type
parameter T, that is the type of the element contained by the cell. For example, to
create and use a cell holding an integer, one could write the following:

object IntegerReference {
def main(args: Array[String]) {

val cell = new Reference[lInt]
cell_set(13)
printIn("'Reference contains the half of ™ + (cell.get*2))
}
}

MR BATATLLE £, get Jy 2R Rl RME AT EAMSR I B4, n] LA 35 Hd
IFH %G IR A SN B

As can be seen in that example, it is not necessary to cast the value returned by the
get method before using it as an integer. It is also not possible to store anything but
an integer in that particular cell, since it was declared as holding an integer.

9 4iE — Conclusion

ARt Scala T 5 M A 4N — S8 EEAR [R o X Scala BRI ELE, 7T LLIE
— 1% Scala By Example, JF{EWE % 2% Scala Language Specification.
This document gave a quick overview of the Scala language and presented some
basic examples. The interested reader can go on by reading the companion
document Scala By Example, which contains much more advanced examples, and
consult the Scala Language Specification when needed.

	1 介绍
	2 第一个例子
	2.1 编译该示例
	2.2 运行该示例

	3 和Java 进行交互
	4 一切皆对象
	4.1 数字是对象
	4.2 函数是对象
	4.2.1 匿名函数

	5 类
	5.1 无参方法
	5.2 继承和方法重写

	6 条件类和模式匹配
	7 Traits
	8 泛型
	9 结语

